Second Year –Fourth Semester

Paper 402101	Inorganic Chemistry	3 Credits, 75Marks(45 Hrs) 3 Hrs/Week
I) Molecular Orbital The Conditions for the formation Linear combination of Atomic (LCAO- MO) approach, Applic Homonucleardiatomic molec Calculation of Bond Order ar energy and magnetic propert Bond order in O_2, O_2^+, O_2^-, O_2 Heteronucleardiatomic molec MO diagrams with explanatio	eory(MOT) : of Molecular Orbitals c Orbitals method to obtain M cation of (LCAO- MO) approac cules : H ₂ , He ₂ , N ₂ , O ₂ , F ₂ , nd correlation with stability ,b cies of all the molecules menti- ² ecules and molecular ion: CO, on of bond order, stability, and	10 Hrs Nolecular Orbitals. In to the formation of : Ne ₂ ond length and bond ioned. NO, CN ⁻ d magnetic behaviour.
II) Chemistry of Transition Definition and general charac Chemistry of transition eleme ionization potential, oxidation coordination compounds an	on Elements: cteristics of transition elemen ents (3d) with reference to : e on states , colour and magneti d applications.	5 Hrs t. electronic configuration , atomic size, ic property , formation of
 III) Coordination Compose Distinction between double se Werner's theory and its expensive theo	ands salts and coordination compo rimental verification N) rule mpounds: ate,Linkage and coordination p al and optical isomerism with apounds based on Valence Bo ate complex d Back bonding	15Hrs unds position isomerism reference to coordination nd theory (VBT)
IV) Gravimetric Analysis : Definition and types of Gravi Precipitation Gravimetry Solubility considerations : Co and nature of solubility,Cont Treatment of precipitates in p Digestion, Filtration and Was Use of Organic Reagents in G	imetric analysis mmon ion effect, diverse ion rolling particle size gravimetry : hing, Drying and ignition Gravimetric Analysis	10 Hrs effect, pH, temperature

V) Acid Base concepts : 05Hrs
 Different classifications of acids and bases such as Arrhenius, Bronsted –Lowry
 Lewis , Solvent system and Lux Flood concepts
 Pearson's Hard Soft Acid Base (HSAB) principle