Paper Code	THEORY	Credits:3
MT402	Title: Numerical Methods	45 L
Unit 1	Roots of Non-Linear equations	15 L
	Approximations and errors in computing, significant digits, types o	f
	errors, Convergence of an iterative process.	
	Posts of non Linger equations Disaction Mathed Convergence	£
	hisection method Ealse position method its convergence. Newton,	1
	Raphson method, its convergence. Secant Method, its convergence,	
Unit 2	System of linear equations & Eigenvalues	15 L
	Iterative solutions of Linear Equations, Gauss Jocobi Iteration	n
	method, Gauss - Seidal iterative method	
	Eigenvalue problem, eigenvalues of symmetric tridiagonal matrix.	
Unit 3	Numerical Solution of Ordinary Differential equations	15 L
	Numerical Solution of Ordinary Differential equations –Picard'	s
	method, Euler's Method, modified Euler's method, Runge –Kutt	a
Poforoncos	Methods.	
1 MK Ia	in R K Ivengar, R K Jain "Numerical Methods for Scientific and Eng	ineering
Compu	tation". Wiley Eastern Ltd. New Delhi-1997.	,meering
2. M.K.Ve	enkataraman– Numerical methods in Science and Engineering	, National
Publish	ing company 1990 edition	
Additional References:		
1. V. Rajaraman – Computer Oriented Numerical Methods, PHI Pub.		
2. S.S. Sa	stry – Introductory methods of Numerical Analysis, PHI Pub.	
Papar Codo	Practical	Crodits:3
	Tactical	creans.5
MP401	Title: Practicals based on MT401 and MT402	45 L
	Group A :Linear Algebra-II	
	1. Gram-Schmidt orthogonalization process	
	2. Orthogonal transformations.	
	3. Cayley-Hamilton Theorem	
	4. Eigenvalues and eigenvectors	
	5. Diagonalization 6. Orthogonal diagonalization and quadratic form	
	Group B: Numerical Methods	
	1. Solving non-linear equation using bisection method and	
	false position method.	
	2. Solving non-linear equation using Newton-Raphson	
	method and secant method.	
	3. Solving system of equations using Gauss-Jacobi method,	

Gauss-Seidel method
4. Finding eigenvalues and eigenvectors.
5. Solving first order linear differential equations using
Picards method, Euler method
6. Solving first order linear differential equations using
Runge-Kutta Method.

Workload

- 1. <u>**Theory**</u> 3 lectures per week per paper.
- 2. **Practical:** 1 practical each of 3 lecture periods per week per batch. Three lecture periods of the practicals shall be conducted in succession together on a single day.

Scheme of Examination

Theory examination for MT301, MT302, MT401 and MT402:

Duration - 3 Hours duration for each paper.

Theory Question Paper Pattern:

- 1. There shall be three questions. On each unit there will be one question of 20 marks and the fourth one will be based on entire syllabus of 15 marks.
- 2. All questions shall be compulsory with internal choice within the questions. (Each question on each unit will be of 25 to 27 marks with options and a question on entire syllabus will be of 20 to 23 marks with options)
- 3. Question may be subdivided into sub-questions a, b, c ... and the allocation of marks depend on the weightage of the topic.

Practical examination for MP301 (MP401):

- (a) **Duration** 3 Hours duration for each practical.
- (b) Practical examination is conducted out of 75 marks.
- (c) Students must complete all the practicals to the satisfaction of the teacher concerned.
- (d) Students must produce at the time of practical examination, the laboratory journal along with the completion certificate signed by the Head of the Department.

(e) Question Paper Pattern:

- (1) There will be four questions of 30 marks each.
- (2) First two questions will be on group A and attempt any one of them. Remaining two will be on group B and attempt any one of them.
- (3) 5 marks for record book and 10 marks for viva/ presentation/ assignment.