SEMESTER - III

Branch: BCA	Semester-III	
Subject Code: 3101	Lecture: 04	
	Credit: 04	
Course Opted	Core Course - 7	
Subject Title	DATA STRUCTURES	

Course objectives:

- To impart basic concepts of data structures and algorithms
- To learn fundamental concepts about arrays, linked list, stack, queue, trees and graphs
- To understand concepts about searching and sorting techniques.
- To gain knowledge about writing algorithm and step by step approach in solving problems with the help of fundamental data structures.
- To find complexity of various algorithmic methods.

Course Outcomes:

- Understand basic data structures such as array, linked list, stack, queue, binary tree and graph along with algorithms.
- Ability to analyze algorithm and algorithm correctness.
- Apply searching and sorting techniques.

Modules	Sr. No.	Topic and Details	No. of Lectures Assigned	Marks Weightage %
UNIT -I	1	Introduction: Definition of Data Structures, Data Types vs. Data Structures, Classification of Data Structures, Description of various data structures, Arrays, Lists, Stacks, Queues, Trees and Graphs, Operations performed on Data Structures	4	8
	2	Arrays: One dimensional array, its Initialization, Implementation of One dimensional array in memory, Insertion, deletion of an element from one dimensional array, Traversing of an array	4	8
UNIT-II	3	Linked Lists: Introduction, Key terms, Advantages & disadvantages, Linear linked lists () - Types (Singly, Doubly, Circular) Operations (Inserting, Deleting nodes)	6	12
	4	Stack: Introduction, Stack implementation, Operations on stack (Push Pop), Implementation of stack using pointer, Applications of stack, Infix prefix, postfix notations, Algorithms for converting from one form to another, Recursion	6	12
	5	Queue: Introduction and Queue implementation, Operations on queue (Insertion & deletion), Limitations of simple queue, Circular queue, Double ended queue (dequeue), Application queue & its types	6	12
UNIT-III	6	Trees: Introduction, terminology, Binary tree,, Strictly Binary tree, Complete Binary tree, Binary tree representation as Array and Linked lists, Traversal	6	12

SNDT WU, BCA Revised Syllabus 2020-21

		(Inorder, Preorder, Postorder), Binary Search Tree, Threaded Binary Tree		
	7	Graphs: Introduction, terminology, Graph representation, Applications of graph, Graph traversal (BFS, DFS, Shortest path), Spanning tree, Minimum spanning tree	6	12
UNIT-IV	8	Sorting: Bubble Sort , Selection Sort , Quick Sort, Heap Sort, Insertion Sort. Searching & Hashing: Searching - Sequential search, Binary Search Hash Function, Hashing Techniques, Collision Resolution	6	12
	9	Algorithms Complexity: Performance Analysis, Time –Space Trade off, Big O, Omega and Theta Notation, Analysis of all Sorting Techniques. Recurrences: The substitution method, Recursion tree method, Master method	6	12
Total			50	100

Text Book:

1. S.Sawhney & E. Horowitz, "Fundamentals of Data Structure", Computer Science Press, 1987

References:

- 1. Trembley&Sorrenson, "Data Structure", 2005
- 2. Lipschuiz, "Data structures", (Schaum's Outline Series Mcgraw Hill Publication)
- 3. Ellis Horowitz and SartajSawhney, "Fundamentals of Computer Algorithms"
- 4. Aho, Hopcroft and Ullman, "Data Structures and Algorithms"
- 5. AbhayAbhyankar, "Data Structures and Files"
- 6. G.S. Baluja, "Data Structures Through C"
- 7. Mary E. S. Loomis, "Data Management and File Structures", Prentice Hall, 2nd ed. edition (January 1989)
- 8. Classical Data Structures : D. Samanta, PHI, New Delhi